The role of callose in guard-cell wall differentiation and stomatal pore formation in the fern Asplenium nidus.

نویسندگان

  • P Apostolakos
  • P Livanos
  • T L Nikolakopoulou
  • B Galatis
چکیده

BACKGROUND AND AIMS The pattern of callose deposition was followed in developing stomata of the fern Asplenium nidus to investigate the role of this polysaccharide in guard cell (GC) wall differentiation and stomatal pore formation. METHODS Callose was localized by aniline blue staining and immunolabelling using an antibody against (1 --> 3)-beta-d-glucan. The study was carried out in stomata of untreated material as well as of material treated with: (1) 2-deoxy-d-glucose (2-DDG) or tunicamycin, which inhibit callose synthesis; (2) coumarin or 2,6-dichlorobenzonitrile (dichlobenil), which block cellulose synthesis; (3) cyclopiazonic acid (CPA), which disturbs cytoplasmic Ca(2+) homeostasis; and (d) cytochalasin B or oryzalin, which disintegrate actin filaments and microtubules, respectively. RESULTS In post-cytokinetic stomata significant amounts of callose persisted in the nascent ventral wall. Callose then began degrading from the mid-region of the ventral wall towards its periphery, a process which kept pace with the formation of an 'internal stomatal pore' by local separation of the partner plasmalemmata. In differentiating GCs, callose was consistently localized in the developing cell-wall thickenings. In 2-DDG-, tunicamycin- and CPA-affected stomata, callose deposition and internal stomatal pore formation were inhibited. The affected ventral walls and GC wall thickenings contained membranous elements. Stomata recovering from the above treatments formed a stomatal pore by a mechanism different from that in untreated stomata. After coumarin or dichlobenil treatment, callose was retained in the nascent ventral wall for longer than in control stomata, while internal stomatal pore formation was blocked. Actin filament disintegration inhibited internal stomatal pore formation, without any effect on callose deposition. CONCLUSIONS In A. nidus stomata the time and pattern of callose deposition and degradation play an essential role in internal stomatal pore formation, and callose participates in deposition of the local GC wall thickenings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The fern Adiantum capillus-veneris lacks stomatal responses to blue light.

We investigated the responses of stomata to light in the fern Adiantum capillus-veneris, a typical species of Leptosporangiopsida. Stomata in the intact leaves of the sporophytes opened in response to red light, but they did not open when blue light was superimposed on the red light. The results were confirmed in the isolated Adiantum epidermis. The red light-induced stomatal response was not a...

متن کامل

Asplenium nidus; The Bird’s Nest Fern: Developmental Studies and Its Conservation

Asplenium nidus L. commonly called as Bird’s Nest Fern, is a threatened, ornamental fern, which is widely used as novel foliage ornamental plant and local people use it in worship. The taxon is threatened due to over exploitation, habitat destruction and genetic barriers. To understand the constraints in the regeneration, reproductive biology studies are made. It is observed that more sporophyt...

متن کامل

Breaking of Plant Stomatal One-Cell-Spacing Rule by Sugar Solution Immersion

The spatial distribution of plant stomata is a model system to study epidermal cell pattern formation. Molecular genetic approaches have identified several key genes required for stomatal distribution patterning, but environmental conditions that perturb the stomatal spacing distribution have not yet been identified. We found that immersing hydroponic cultures in 1-5% sucrose solution induced a...

متن کامل

Ultrastructure and composition of cell wall appositions in the roots of Asplenium (Polypodiales).

Cell wall appositions (CWAs), formed by the deposition of extra wall material at the contact site with microbial organisms, are an integral part of the response of plants to microbial challenge. Detailed histological studies of CWAs in fern roots do not exist. Using light and electron microscopy we examined the (ultra)structure of CWAs in the outer layers of roots of Asplenium species. All cell...

متن کامل

Stomatal Opening Involves Polar, Not Radial, Stiffening Of Guard Cells

It has long been accepted that differential radial thickening of guard cells plays an important role in the turgor-driven shape changes required for stomatal pore opening to occur [1-4]. This textbook description derives from an original interpretation of structure rather than measurement of mechanical properties. Here we show, using atomic force microscopy, that although mature guard cells dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of botany

دوره 104 7  شماره 

صفحات  -

تاریخ انتشار 2009